

Further SRM v2.2 Proposed Changes

Compiled by Alex Sim at LBNL

Inclusive of SRM v2.2 draft 3 by

Timur Perelmutov at FNAL

With contributions from
Jean-Philippe Baud and Maarten Litmaath at CERN

and Arie Shoshani at LBNL

May 17, 2006

Abstract

In regards to recent discussion with WLCG Data Management Coordination Group for
the requirements of the LHC experiments of the Grid Storage Interfaces, we propose the
changes to SRM v2.1.2 specification.
This proposed SRM version 2.2 changes extend and update the current SRM v2.1.2
specification. When accepted, the changes will be consolidated into the SRM
specification to be a part of SRM v2.2 specification.

Proposed V2.2 Changes

Changes from the previous doc version RC1:

1. srmPing returns SRM version number instead of boolean.
2. In srmLs, comments added for TUserID in TUserPermissions and TGroupID in

TGroupPermission that they may represent DN and/or VOMS role, instead of
unix style login name.

3. In srmTransferProtocolInfo, srmPing and for additional information for transfer
protocols of TURL, a paired structure is returned as TExtraInfo (page 11). As the
result, a string type of TTransferProtocolInfo is removed.

1. In the Space Reservation Functions:

Summary:

• Space types (TSpaceType) are removed.
• Retention policy is introduced as a way of indicating quality of the space where

files are located.
• Access latency is also introduced to describe how latency of files is improvable.

• srmReserveSpace is now asynchronous, and srmGetStatusOfReserveSpace is
introduced for checking status of the asynchronous srmReserveSpace.

• TMetaDataSpace includes retention policy information instead of previous space
types, and file locality to indicate the current location of the file.

• srmChangeRetentionPolicy is introduced to change a retention policy of files.
Since it may take a long time to complete the request, it may be an asynchronous
operation, and srmGetStatusOfChangeRetentionPolicy is introduced.

• srmExtendFileLifetimeInSpace is added to extend lifefime for all files in a space
that is associated with a space token.

Details:

enum TRetentionPolicy { REPLICA , OUTPUT , CUSTODIAL }

• Quality of Retention (Storage Class) is a kind of Quality of Service. It refers to
the probability that the storage system lose a file. Numeric probabilities are self-
assigned.

o Replica quality has the highest probability of loss, but is appropriate for
data that can be replaced because other copies can be accessed in a timely
fashion.

o Output quality is an intermediate level and refers to the data which can be
replaced by lengthy or effort-full processes.

o Custodial quality provides low probability of loss.
• The type will be used to describe retention policy assigned to the files in the

storage system, at the moments when the files are written into the desired
destination in the storage system. It will be used as a property of space allocated
through the space reservation function. Once the retention policy is assigned to a
space, the files put in the reserved space will automatically be assigned the
retention policy of the space. The assigned retention policy on the file can be
found thought the TMetaDataPathDetail structure returned by the srmLs function.

enum TAccessLatency { ONLINE, NEARLINE }

• Files may be Online, Nearline or Offline. These terms are used to describe how
latency to access a file is improvable. Latency is improved by storage systems
replicating a file such that its access latency is online.

o The ONLINE cache of a storage system is the part of the storage system
which provides file with online latencies.

o ONLINE has the lowest latency possible. No further latency
improvements are applied to online files.

o NEARLINE file can have their latency improved to online latency
automatically by staging the file to online cache.

o For completeness, we also describe OFFLINE here.
o OFFLINE files need a human to be involved to achieve online latency.
o For the SRM we only keep ONLINE and NEARLINE.

• The type will be used to describe a space property that access latency can be
requested at the time of space reservation. The content of the space, files may
have the same or “lesser” access latency as the space.

typedef struct {
 TRetentionPolicy retentionPolicy,
 TAccessLatency accessLatency
 } TRetentionPolicyInfo

• TRetentionPolicyInfo is a combined structure to indicate how the file needs to be
stored.

• When both retention policy and access latency are provided, their combination
needs to match what SRM supports. Otherwise request will be rejected.

srmReserveSpace

This function is used to reserve a space in advance for the upcoming requests to get some
guarantee on the file management. Asynchronous space reservation may be necessary for
some SRMs to serve many concurrent requests.

 In: TUserID authorizationID,

String userSpaceTokenDescription,
 TRetentionPolicyInfo preferredRetentionPolicyInfo,

TSizeInBytes sizeOfTotalSpaceDesired,
TSizeInBytes sizeOfGuaranteedSpaceDesired,
TLifeTimeInSeconds lifetimeOfSpaceToReserve,
Int [] expectedFileSize,
TStorageSystemInfo storageSystemInfo

 Out: TRequestToken requestToken
 TLifeTimeInSeconds estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

TSizeInBytes sizeOfTotalReservedSpace, // best effort
TSizeInBytes sizeOfGuaranteedReservedSpace,
TLifeTimeInSeconds lifetimeOfReservedSpace,
TSpaceToken, spaceToken,
TReturnStatus returnStatus

 Notes:
• Asynchronous space reservation may be necessary for some SRMs to serve many

concurrent requests. In such case, request token must be returned, and space token
must not be assigned and returned until space reservation is completed. If the
space reservation can be done immediately, request token must not be returned.

• When asynchronous space reservation is necessary, the returned status code
should be SRM_REQUEST_QUEUED.

• Input parameter expectedFileSize is a hint that SRM server can use to reserve
consecutive storage sizes for the request. At the time of space reservation, if space
accounting is done only at the level of the total size, this hint would not help. In
such case, the expected file size at the time of PrepareToPut will describe how
much consecutive storage size is needed for the file. However, some SRMs may
get benefits from these hints to make a decision to allocate some blocks in some
specific devices.

• Optional input parameter storageSystemInfo is needed in case the underlying
storage system requires additional security information.

• SRM may return its default space size and lifetime if not requested by the client.
SRM may return SRM_INVALID_REQUEST if SRM does not support default
space sizes.

• If input parameter sizeOfTotalSpaceDesired is not specified, the SRM will return
its default space size.

• Output parameter estimateProcessingTime is used to indicate the estimation time
to complete the space reservation request, when known.

• Output parameter sizeOfTotalReservedSpace is in best effort bases. For
guaranteed space size, sizeOfGuaranteedReservedSpace should be checked.
These two numbers may match, depending on the storage systems.

• Output parameter spaceToken is a reference handle of the reserved space.

srmGetStatusOfReserveSpace

This function is used to check the status of the previous request to srmReserveSpace,
when asynchronous space reservation was necessary with the SRM. Request token must
have been provided in response to the srmReserveSpace.

 In: TUserID authorizationID,
 TRequestToken requestToken

 Out: TLifeTimeInSeconds estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

TSizeInBytes sizeOfTotalReservedSpace,
TSizeInBytes sizeOfGuaranteedReservedSpace,
TLifeTimeInSeconds lifetimeOfReservedSpace,
TSpaceToken, spaceToken,
TReturnStatus returnStatus

 Notes:

• If the space reservation is not completed yet, estimateProcessingTime is returned
when known. The returned status code in such case should be
SRM_REQUEST_QUEUED.

• See notes for srmReserveSpace for descriptions for output parameters.

srmGetSpaceMetaData

This function is used to get information of a space. Space token has to be provided, and
space tokens are returned upon a completion of a space reservation through
srmReserveSpace or srmGetStatusOfReserveSpace.

typedef struct { TSpaceToken spaceToken,
 TRetentionPolicyInfo retentionPolicyInfo,

Boolean isValid,
TUserID owner,

 TSizeInBytes totalSize, // best effort
TSizeInBytes guaranteedSize,

 TSizeInBytes unusedSize,
 TLifeTimeInSeconds lifetimeAssigned,
 TLifeTimeInSeconds lifetimeLeft

} TMetaDataSpace

• TMetaDataSpace is used to describe properties of a space, and is used as an
output parameter in srmGetSpaceMetaData.

• retentonPolicyInfo is added to indicate the information about retention policy and
access latency that the space is assigned. retentionPolicyInfo is requested and
assigned at the time of space reservation through srmReserveSpace and
srmGetStatusOfReserveSpace.

Details:

 In: TUserID authorizationID,

TSpaceToken[] arrayOfSpaceToken

 Out: TMetaDataSpace[] arrayOfSpaceDetails
TReturnStatus returnStatus

srmChangeRetentionPolicy

This function is used to change the retention policy of files to another retention policy by
specifying source and target space tokens. All files specified by SURLs that are
associated with the space token will have a new space token. New space token may be
acquired from srmReserveSpace. Asynchronous operation may be necessary for some
SRMs, and in such case, request token is returned for later status inquiry. There is no
default behavior when source or target space token is not provided. In such case, the
request will be rejected, and the return status must be SRM_INVALID_REQUEST.

 In: TUserID authorizationID

 TSURLInfo[] arrayOfSURLs
 TSpaceToken sourceSpaceToken
 TSpaceToken targetSpaceToken

 Out: TRequestToken requestToken
 TLifeTimeInSeconds estimatedProcessingTime
 TReturnStatus returnStatus

Notes:

• Asynchronous operation may be necessary for some SRMs to serve many
concurrent requests. In such case, request token must be returned. If the request
can be completed immediately, request token must not be returned.

• When asynchronous operation is necessary, the returned status code should be
SRM_REQUEST_QUEUED.

• All files specified in arrayOfSURLs in the space associated with
sourceSpaceToken will be moved to the space associated with targetSpaceToken.

• If any arrayOfSURLs are not specified, all files in the space associated with
sourceSpaceToken may be moved to the target space associated with
targetSpaceToken.

• If target space token is to be used, space allocation for a new space token must be
done explicitly by the client before using this function.

• Space de-allocation may be necessary in some cases where source space token is
associated, and it must be done by the client explicitly after this operation
completes. The status can be checked by srmGetStatusOfChangeRetentionPolicy.

srmGetStatusOfChangeRetentionPolicy

This function is used to check the status of the previous request to
srmChangeRetentionPolicy, when asynchronous operation was necessary in the SRM.
Request token must have been provided in response to the srmChangeRetentionPolicy.

 In: TUserID authorizationID,
 TRequestToken requestToken

 Out: TLifeTimeInSeconds estimatedProcessingTime,

TReturnStatus returnStatus

Notes:

• If changing retention policy is not completed, estimateProcessingTime is returned
when known. The returned status code in such case should be
SRM_REQUEST_QUEUED.

srmExtendFileLifeTimeInSpace

This function is used to extend lifetime of the files in a space.

 In: TSpaceToken spaceToken,
 TSURL[] SURLs,
 TUserID authorizationID,
 TLifeTimeInSeconds newLifeTime

 Out: TReturnStatus returnStatus,
 TLifeTimeInSeconds newTimeExtended

Notes:

• When spaceToken is provided, the lifetime of the file copy of the SURLs in the
space associated with the space token will be extended.

• newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

• The number of lifetime extensions maybe limited by SRM according to its
policies.

• If original lifetime is longer than the requested one, then the requested one will be
assigned.

• If newLifeTime is not specified, the SRM can use its default to assign the
newLifeTime.

2. In the Directory Functions:

Summary:

• srmRemoveFiles has an optional request token, instead of required request token.
• srmRemoveFiles has an optional space token to remove “copies” (or “states”) of

files in a specific space.
• TMetaDataPathDetail includes the assigned retention policy, and includes an

indication of files being located online, nearline, or both.
• srmLs has TSURL and TStorageSystemInfo separately from the previously

combined TSURLInfo as input parameters.

srmRm

This function will remove SURLs (the name space entries) in the storage system.
Difference from srmRemoveFiles is that srmRemoveFiles removes only previously
requested “copies” (or “state”) of the SURL, and srmRemoveFiles shall not remove
SURLs or the name space entries. If any files are not released yet, this function will
release them before removing SURLs.

 In: TUserID authorizationID,

TSURLInfo[] arrayOfSURLs

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatus

srmRemoveFiles

This function will be used to remove previously requested files (online/nearline "copies"
or "states") specified by SURLs, through srmPrepareToGet and srmBringOnline. This
function must not remove the SURLs, but only the "copies" or "states" of the SURLs.
srmRm must be used to remove SURLs.

 In: TUserID authorizationID
 TSURLInfo[] arrayOfSURLs

TRequestToken requestToken
 TSpaceToken spaceToken

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatus

Notes:

• When input parameter requestToken is provided, SRM will remove only the
“copies” (or “state”) of the SURLs associated with the request token.

• When input parameter spaceToken is provided, SRM will remove only the
“copies” (or “state”) of the SURLs associated with the space token.

• When input parameter requestToken and spaceToken are provided, SRM will
verify if files associated with the request token belongs to the space associated
with the space token, and SRM will remove the “copy” (or “state”) of the file.
srmRemoveFiles must not remove the SURL, the namespace entry. srmRm must
be used for such purpose.

• It has the effect of a release on the “copy” (or “state”) of the file before being
removed.

srmLs

This function is used to get information of a file.

typedef struct { TUserID userID,
 TPermissionMode mode

} TUserPermission

• TUserID may represent the associated client’s Distinguished Name (DN) instead

of unix style login name. VOMS role may be included.

typedef struct { TGroupID groupID,
 TPermissionMode mode

} TGroupPermission
• TGroupD may represent the associated client’s Distinguished Name (DN) instead

of unix style login name. VOMS role may be included.

enum TFileLocality { ONLINE, NEARLINE, BOTH }

• Files may be located online, nearline or both. This indicates if the file is online or
not, or if the file reached to nearline or not. It also indicates if there are online and
nearline copies of the file.

o The ONLINE indicates that there is a file on online cache of a storage
system which is the part of the storage system, and the file may be
accessed with online latencies.

o The NEARLINE indicates that the file is located on nearline storage
system, and the file may be accessed with nearline latencies.

o The BOTH indicates that the file is located on online cache of a storage
system as well as on nearline storage system.

• The type will be used to describe a file property that indicates the current location
in the storage system.

typedef struct {TSURL surl, // both dir and file
 TReturnStatus status,
 TSizeInBytes size, // 0 if dir
 TOwnerPermission ownerPermission,

TUserPermission[] userPermission,
TGroupPermission[] groupPermission,
TOtherPermission otherPermission

 TGMTTime createdAtTime,
 TGMTTime lastModificationTime,
 TUserID owner,
 TFileStorageType fileStorageType,
 TRetentionPolicyInfo retentionPolicyInfo,
 TFileLocality fileLocality,
 TSpaceToken[] spaceTokens,
 TFileType type, // Directory or File
 TLifeTimeInSeconds lifetimeAssigned,
 TLifeTimeInSeconds lifetimeLeft, // on the SURL
 TCheckSumType checkSumType,
 TCheckSumValue checkSumValue,

TSURL originalSURL, // if path is a file
TMetaDataPathDetail[] subPath // optional recursive

} TMetaDataPathDetail

• The TMetaDataPathDetail describes the properties of a file. It is used as an
output parameter in srmLs.

• retentionPolicyInfo indicates the assigned retention policy.
• fileLocality indicates where the file is located currently in the system: online,

nearline or both.
• spaceTokens as an array of TSpaceToken indicates where the file is currently

located for the client. Only space tokens that the client has authorized to access to
read the file must be returned.

Details:

 In: TUserID authorizationID,

TStorageSystemInfo storageSystemInfo,
TSURL [] surls,

 TFileStorageType fileStorageType,
 boolean fullDetailedList,

boolean allLevelRecursive,
int numOfLevels,
int offset,
int count

 Out: TMetaDataPathDetail[] details,

TReturnStatus returnStatus
Notes:

• Applies to both dir and file
• fullDetailedList=false by default.

o For directories, only path is required to be returned.
o For files, path and size are required to be returned.

• If fullDetailedList=true, the full details are returned.
o For directories, path and userPermission are required to be returned.
o For files, path, size, userPermission, lastModificationTime,

typeOfThisFile, and lifetimeLeft are required to be returned, similar to
unix command ls –l.

• If allLevelRecursive=true then file lists of all level below current will be provided
as well.

• If allLevelRecursive is "true" it dominates, i.e. ignore numOfLevels. If
allLevelRecursive is "false" or missing, then do numOfLevels. If numOfLevels is
"0" (zero) or missing, assume a single level. If both allLevelRecursive and
numOfLevels are missing, assume a single level.

• When listing for a particular type specified by “fileStorageType”, only the files
with that type will be in the output.

• Empty directories will be returned.

• We recommend width first in the listing.
• We recommend that list of directories come before list of files in the return array

(details).

3. In the Data Transfer Functions:

Summary:

• Client access pattern is added to indicate the possible usage pattern of the TURL.
• Client connection type is added to indicate the possible connection to the TURL.
• TTransferProtocol is added to combine the client input parameters for array of

client supported transfer protocol list, client access pattern, and client connection
type.

• TExtraInfo is added for additional information about the returned transfer
protocol of TURL. It may indicate the properties of the transfer protocol so that
the client can optimize the date transfer.

enum TAccessPattern { TransferMode, ProcessingMode }

• TAccessPattern will be passed as an input parameter to the srmPrepareToGet and
srmBringOnline functions. It will make a hint from the client to SRM how the
Transfer URL (TURL) produced by SRM is going to be used. If the parameter
value is “ProcessingMode”, the system may expect that client application will
perform some processing of the partially read data, followed by more partial reads
and a frequent use of the protocol specific “seek” operation. This will allow
optimizations by allocating files on disks with small buffer sizes. If the value is
“TransferMode” the file will be read at the highest speed allowed by the
connection between the server and a client.

enum TConnectionType { WAN, LAN }

• TConnectionType indicates if the client is connected though a local or wide area
network. SRM may optimize the access parameters to achieve maximum
throughput for the connection type. This will be passed as an input to the
srmPrepareToGet, srmPrepareToPut and srmBringOnline functions.

typedef struct {TAccessPattern accessPattern,
 TConnectionType connectionType,
 string[] arrayOfTransferProtocols

} TTransferProtocol

• TTransferProtocol is used where arrayOfTransferProtocols was used previously.

• TGetFileRequest includes TAccessPattern which may conflict with the online
disk type of the target space associated with target space token if provided. In this
case, TAccessPattern must be ignored.

typedef struct {string key,
 string value,

} TExtraInfo

• TExtraInfo is used where additional information is needed, such as for additional
information for transfer protocols of TURLs in srmStatusOfGetRequest,
srmStatusOfPutRequest, srmGetTransferProtocols, and srmPing.

• For example, when it is used for additional information for transfer protocols, the
keys may specify access speed, available number of parallelism, and other
transfer protocol properties.

srmPrepareToGet

This function is used to bring files online upon the client’s request and assign TURL so
that client can access the file. Lifetime (pinning expiration time) is assigned on the TURL.
When specified target space token which must be referred to an online space, the files
will be prepared using the space associated with the space token. It may be an
asynchronous operation, and request token must be returned if asynchronous operation is
necessary in SRM. The status may be checked through srmGetStatusOfPrepareToGet
with the returned request token.

typedef struct {TSURL fromSURL,

TDirOption dirOption,
} TGetFileRequest

• TLifetimeInSeconds, TFileStorageType and TSpaceToken are removed from

the previous TGetFileRequest. fromSURL becomes of type TSURL instead
of TSURLInfo so that TStorageSystemInfo can be removed at the file level.
Those removed input parameters may be provided at the request level, instead
of the file level. This will make the interface and implementation simpler. It
prevents different file storage types that can be requested at the same time into
different target space for multiple files.

typedef struct {TSURL fromSURL,
 TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TLifeTimeInSeconds remainingPinTime,
TFileStorageType fileStorageType

TSpaceToken spaceToken,
TTURL transferURL
TExtraInfo transferProtocolInfo

} TGetRequestFileStatus

• transferProtocolInfo of type TExtraInfo is added to the TGetRequestFileStatus.
This output parameter can be used to provide more information about the
transfer protocol so that client can access the TURL efficiently.

• TSpaceToken is added to the TGetRequestFileStatus to show and confirm
which space is used for the file, if client provided the target space token at the
time of the srmPrepareToGet.

• TFileStorageType is added to the TGetRequestFileStatus to show and confirm
which file storage type is used for the file, if client provided the desired file
storage type at the time of the srmPrepareToGet.

Details:

 In: TUserID authorizationID,

TGetFileRequest[] arrayOfFileRequest,
 string userRequestDescription,

TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds totalRetryTime
 TFileStorageType preferredFileStorageType
 TLifeTimeInSeconds desiredLifetime,

TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferProtocol transferProtocolList

 Out: TRequestToken requestToken,
 TReturnStatus returnStatus,
 TGetRequestFileStatus[] arrayOfFileStatus

• Those file level input parameters (TFileStorageType, TLifeTimeInSeconds,
TSpaceToken) are now at the request level to simplify the interface and
implementation.

• Array of transfer protocols is combined with access pattern and connection
type in transfer protocol list as TTransferProtocol.

Notes:

• If input parameter TSpaceToken is provided, then the target space token must
refer to online space. All requested files will be prepared into the target space.

• Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
prepared online.

• If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected.

• Access latency must be ONLINE always.
• Input parameter TAccessPattern is provided at the request-level, and all files will

have the same access pattern.
• TAccessPattern may conflict with the type of the target space associated with

target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferProtocol must be ignored.

• The userRequestDescription is a user designated name for the request. It can be
used in the srmGetRequestID function to get back the system assigned request
tokens.

• Only pull mode is supported for file transfers that client must pull the files from
the TURL within the expiration time (remainingPinTime).

• Input parameter desiredLifetime is for a client preferred lifetime (expiration time)
on the prepared TURL.

• If asynchronous operation is needed, SRM assigns the requestToken for
asynchronous status checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

• When the file is ready and TURL is prepared, the return status code should be
SRM_FILE_PINNED.

• “retryTime” means: if all the file transfer for this request are complete, then try
previously failed transfers in this request for a total time period of “retryTime”.

• In case that the retries fail, the return status should include an explanation of why
the retries failed.

• This call may be an asynchronous (non-blocking) call. To get subsequent status
and results, separate calls through srmGetStatusOfPrepareToGet should be made
with request token.

• When the file is ready for the user, the file is implicitly pinned in the cache and
lifetime will be enforced.

• The invocation of srmReleaseFile() is expected for finished files later on.
• The returned request token should be valid until all files in the request are

released or removed.

srmPrepareToPut

This function is used to write files into the storage. Upon the client’s request, SRM
prepares a TURL so that client can write data into the TURL. Lifetime (pinning
expiration time) is assigned on the TURL. When a specified target space token is
provided, the files will be located finally in the targeted space associated with the target
space token. It may be an asynchronous operation, and request token must be returned if
asynchronous operation is necessary in SRM. The status may be checked through
srmGetStatusOfPrepareToPut with the returned request token.

typedef struct {TSURL targetSURL , // local to SRM
 TSizeInBytes expectedFileSize

} TPutFileRequest

• targetSURL is required.
• TLifetimeInSeconds, TFileStorageType and TSpaceToken are removed from

the previous TPutFileRequest. targetSURL becomes of type TSURL instead
of TSURLInfo so that TStorageSystemInfo can be removed at the file level.
Those removed input parameters can be provided at the request level, instead
of the file level. This will make the interface and implementation simpler. It
prevents different file storage types that can be requested at the same time into
different target space for multiple files.

typedef struct { TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TTURL transferURL,
TSURL SURL,
TLifeTimeInSeconds remainingPinTime // on TURL
TFileStorageType fileStorageType
TSpaceToken spaceToken,

 TExtraInfo transferProtocolInfo
} TPutRequestFileStatus

• TSpaceToken is added to the TPutRequestFileStatus to show and confirm

which space is used for the file, if client provided the target space token at the
time of the srmPrepareToPut.

• TFileStorageType is added to the TPutRequestFileStatus to show and confirm
which file storage type is used for the file, if client provided the desired file
storage type at the time of the srmPrepareToPut.

• transferProtocolInfo of type TExtraInfo is added to the TPutRequestFileStatus
to give clients more information about the prepared transfer protocol so that
client may use the information to make an efficient access to the prepared
TURL through the transfer protocol.

Details:

 In: TUserID authorizationID,

TPutFileRequest[] arrayOfFileRequest,
string userRequestDescription,

 TOverwriteMode overwriteOption,
 TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds totalRetryTime
 TLifeTimeInSeconds desiredPinLifetime, // on TURL

 TLifeTimeInSeconds desiredFileLifetime, // on SURL
 TFileStorageType preferredFileStorageType,

TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferProtocol transferProtocolList

 Out: TRequestToken requestToken,
 TReturnStatus returnStatus,
 TPutRequestFileStatus[] arrayOfFileStatus

• Those file level input parameters (TLifeTimeInSeconds, TFileStorageType
and TSpaceToken) are now at the request level to simplify the interface and
implementation.

• Array of transfer protocols is combined with access pattern and connection
type in transfer protocol list as TTransferProtocol.

Notes:

• TAccessPattern may conflict with the type of the target space associated with
target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferProtocol must be ignored.

• Input parameter TSpaceToken is provided at the request-level, and all files in the
request will end up in the space that is associated with the target space token.

• Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is written
into the target storage system.

• If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected.

• Only push mode is supported for file transfers that client must “push” the file to
the prepared TURL.

• Input parameter targetSURL in the TPutFileRequest has to be local to SRM. If
targetSURL is not specified, SRM will make a reference for the file request
automatically and put it in the specified user space if provided. This reference url
will be returned along with the “Transfer URL”.

• srmPutDone() is expected after each file is “put” into the prepared TURL.
• Input parameter desiredPinLifetime is the lifetime (expiration time) on the TURL

when the Transfer URL is prepared. It does not refer to the lifetime of the SURL.
• Input parameter desiredFileLifetime is the lifetime of the SURL when the file is

put into the storage system. It does not refer to the lifetime (expiration time) of the
TURL.

• The lifetime of the SURL starts as soon as SRM get the srmPutDone(). If
srmPutDone() is not provided, then the files in that space are subject to removal
when the lifetime on the TURL expires or the lifetime on the space expires. The
lifetime on the TURL can be found in the status of the file request as output
parameter remainingPinTime in TPutRequestFileStatus.

• “retryTime” is meaningful only when the file destination is not a local disk, such
as tape or MSS.

• In case that the retries fail, the return should include an explanation of why the
retries failed.

srmCopy

This function is used to copy files from source storage sites into the target storage sites.
The source storage site or the target storage site needs to be the SRM itself that the client
makes the srmCopy request. If both source and target are local to the SRM, it performed a
local copy. There are two cases for remote copies: 1. Target SRM is where client makes a
srmCopy request (PULL case), 2. Source SRM is where client makes a srmCopy request
(PUSH case).

1. PULL case: Upon the client’s srmCopy request, the target SRM makes a space at
the target storage, and makes a request srmPrepareToGet to the source SRM.
When TURL is ready at the source SRM, the target SRM transfers the file from
the source TURL into the prepared target storage.

2. PUSH case: Upon the client’s srmCopy request, the source SRM prepares a file to
be transferred out to the target SRM, and makes a request srmPrepareToPut to the
target SRM. When TURL is ready at the target SRM, the source SRM transfers
the file from the prepared source into the prepared target TURL. After the file
transfer completes, srmPutDone is issued to the target SRM.

When specified target space token is provided, the files will be located finally in the
targeted space associated with the space token. It may be an asynchronous operation, and
request token must be returned if asynchronous operation is necessary in contacting SRM.
The status may be checked through srmGetStatusOfCopy with the returned request token.

typedef struct {TSURLInfo fromSURLInfo,
 TSURLInfo toSURLInfo,

TDirOption dirOption
} TCopyFileRequest

• TLifetimeInSeconds, TFileStorageType, TSpaceToken and TOverwriteMode

are removed from the previous TCopyFileRequest. Those removed input
parameters can be provided at the request level, instead of the file level. This
will make the interface and implementation simpler. It prevents different file
storage types that can be requested at the same time into different target space
for multiple files.

typedef struct {TSURL fromSURL,
 TSURL toSURL,
 TSizeInBytes fileSize,

 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TLifeTimeInSeconds remainingPinTime
TFileStorageType targetFileStorageType
TSpaceToken targetSpaceToken

} TCopyRequestFileStatus

• TSpaceToken is added to the TCopyRequestFileStatus to show and confirm
which space is used for the file, if client provided the target space token at the
time of the srmCopy.

• TFileStorageType is added to the TCopyRequestFileStatus to show and
confirm which file storage type is used for the file, if client provided the target
file storage type at the time of the srmCopy.

Details:

 In: TUserID authorizationID,

TCopyFileRequest[] arrayOfFileRequest,
 string userRequestDescription,
 TOverwriteMode overwriteOption,
 Boolean removeSourceFiles (default = false),
 TLifeTimeInSeconds totalRetryTime
 TLifeTimeInSeconds lifetime, // on target SURLs
 TFileStorageType targetFileStorageType,

TOverwriteMode overwriteMode,
TSpaceToken targetSpaceToken,
TRetentionPolicyInfo targetFileRetentionPolicyInfo

 Out: TRequestToken requestToken,
 TReturnStatus returnStatus,
 TCopyRequestFileStatus[] arrayOfFileStatus

• Those file level input parameters (TLifeTimeInSeconds, TFileStorageType,
TOverwriteMode and TSpaceToken) are now at the request level to simplify
the interface and implementation.

Notes:

• Input parameter TSpaceToken is provided at the request-level, and all files in the
request will end up in the space that is associated with the target space token.

• Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is written
into the target storage system.

• If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected.

• Pull mode: copy from remote location to the SRM. (e.g. from remote to MSS.)
• Push mode: copy from the SRM to remote location.
• Always release files through srmReleaseFiles from the source after copy is done,

if source is an SRM and PULL mode was performed.
• Always issue srmPutDone to the target after copy is done, if target is an SRM and

PUSH mode was performed.
• When removeSourceFiles is true, then SRM will request srmRm (in case the

source is an SRM) or will use any other means to remove the source files on
behalf of the caller after copy is done.

• Note there is no protocol negotiation with the client for this request.
• “retryTime” means: if all the file transfer for this request are complete, then try

previously failed transfers in this request for a total time period of “retryTime”.
• In case that the retries fail, the return status should include an explanation of why

the retries failed.
• When both fromSURL and toSURL are local, perform local copy
• Empty directories are copied as well.

srmBringOnline

This function is used to bring files online upon the client’s request so that client can make
certain data readily available for future access. In hierarchical storage systems, it is
expected to “stage” files to the top hierarchy and make sure that the files stay online for a
certain period of time. When client specifies target space token which must be referred to
an online space, the files will be brought online using the space associated with the space
token. It may be an asynchronous operation, and request token must be returned if
asynchronous operation is necessary in SRM. The status may be checked through
srmGetStatusOfBringOnline with the returned request token.
This function is similar to srmPrepareToGet, but it does not return Transfer URL (TURL).

typedef struct {TSURL fromSURL,
 TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TLifeTimeInSeconds remainingPinTime,
TFileStorageType fileStorageType
TSpaceToken spaceToken

} TBringOnlineRequestFileStatus

Details:

 In: TUserID authorizationID,

TGetFileRequest[] arrayOfFileRequest,
 string userRequestDescription,

TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds totalRetryTime
 TFileStorageType preferredFileStorageType
 TLifeTimeInSeconds desiredLifetime, // pin time

TSpaceToken targetSpaceToken,
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferProtocol transferProtocolList

 Out: TRequestToken requestToken,
 TReturnStatus returnStatus,
 string[] supportedTransferProtocols,
 TBringOnlineRequestFileStatus[] arrayOfFileStatus

• The difference from srmPrepareToGet is in the output parameters.
o supportedTransferProtocols is an array of transfer protocols that

SRM can support among the client provided transfer protocol list.
o TBringOnlineRequestFileStatus resembles the TGetFileStatus, but

does not contain TURL and TransferProtocolInfo.

Notes:

• Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
brought online.

• If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected.

• TAccessPattern may conflict with the type of the target space associated with
target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferProtocol must be ignored.

• When arrayOfTransferProtocols are submitted, SRM returns those transfer
protocols that SRM supports among the user-submitted transfer protocols.

• The userRequestDescription is a user designated name for the request. It can be
used in the srmGetRequestID method to get back the system assigned request ID.

• Input parameter desiredLifetime is for a client preferred lifetime (expiration time)
on the file “copies (or “states”) of the SURLs that will be “brought online” into
the target space that is associated with the targetSpaceToken.

• SRM assigns the requestToken at the time of asynchronous operation when
necessary.

• “retryTime” means: if all the file transfer for this request are complete, then try
previously failed transfers for this request for a total time period of “retryTime”.

• In case that the retries fail, the return status should include an explanation of why
the retries failed.

• This call may be an asynchronous (non-blocking) call. To get subsequent status
and results, separate calls should be made through srmStatusOfBringOnline.

• The returned request token should be valid until all files in the request are
released, removed or aborted.

• When srmAbortRequest is requested for srmBringOnline request, the request gets
aborted, but those files that are brought online will remain in the space where they
are brought in, and are not removed. Clients need to remove those files through
srmRemoveFiles.

srmStatusOfBringOnlineRequest

This function is used to check the status of the previous request to srmBringOnline, when
asynchronous operation is necessary in the SRM. Request token must have been provided
in response to the srmBringOnline.

 In: TRequestToken requestToken,
 TUserID authorizationID
 TSURL[] arrayOfFromSURLs,

 Out: TReturnStatus returnStatus,

TBringOnlineRequestFileStatus[] arrayOfFileStatus

Notes:

• If arrayOfFromSURLs is not provided, returns status for all files in this request.

4. In the Information Discovery Functions:

Summary:

• srmGetSRMStorageInfo is added for clients to discover the system information.
• srmGetTransferProtocols is added for clients to discover the supported transfer

protocols by SRM.
• srmPing is added for clients to check the status of the SRM.

srmGetSRMStorageInfo

This function is used to discover what features SRM supports and what the default values
for a specific feature in SRM.

enum TStorageAttributes { SRM_STORAGE_CAPACITY,

SRM_USER_STORAGE_MAX,
SRM_USER_STORAGE_MIN,

SRM_USER_STORAGE_DEFAULT_LIFETIME,
SRM_DEFAULT_FILE_LIFETIME,
SRM_DEFAULT_FILE_STORAGE_TYPE,
SRM_DEFAULT_TURL_EXPIRATION_TIME,
SRM_ DEFAULT_ACCESS_LATENCY,
SRM_ DEFAULT_ACCESS_PATTERN,
SRM_ DEFAULT_CONNECTION_TYPE,
SRM_ DEFAULT_RETENTION_POLICY,
SRM_SUPPORTED_FILE_STORAGE_TYPE,
SRM_SUPPORTED_RETENTION_POLICY,
SRM_SUPPORTED_ACCESS_PATTERN,
SRM_SUPPORTED_CONNECTION_TYPE,
SRM_SUPPORTED_ACCESS_LATENCY,
SRM_DEFAULT_TRANSFER_PROTOCOL
}

typedef struct {
 TStorageAttributes storageAttr,
 string value,
 string valueType,
 string explanation

} TStorageInfo

• value - value of the storageAttr. When SRM supports multiple values (e.g. when
SRM supports multiple retention policies), this value may contain more than one
value separated by comma (,). E.g. RELICA,CUSTODIAL

• valueType - data type of the value for storageAttr in literal characters. For
example, int, long, string, boolean, TRetentionPolicy, etc.

• explanation – this parameter explains what the value means to the SRM server.
E.g. CUSTODIAL from TRetentionPolicy can be explained in the parameter that
how the particular SRM treats this type if supported.

Details:

 In: TUserID authorizationID,
 EnumStorageAttributes desiredAttributes[]

 Out: TReturnStatus returnStatus,
 TStorageInfo storageInfo[]

Notes:

• srmGetSRMStorageInfo retrieves SRM storage information, such as storage
capacity, client quota, default lifetime, etc.

• When output parameter, TStorageInfo is returned to the client, storageAttr and its
value are required to be returned.

srmGetTransferProtocols

This function is to discover what transfer protocols are supported by the SRM.

typedef struct {
 string transferProtocol,
 TExtraInfo attributes

} TSupportedTransferProtocols

Note:

• transferProtocol (required): Supported transfer protocol. For example, gsiftp, http.
• attributes: Informational hints for the paired transfer protocol, such how many

number of parallel streams can be used, desired buffer size, etc.

Details:

 In: TUserID authorizationID,

 Out: TReturnStatus returnStatus,
 TSupportedTransferProtocols protocolInfo[]

Notes:

• srmGetTransferProtocols() returns the supported file transfer protocols in the
SRM with any additional information about the transfer protocol.

srmPing

This function is used to check the state of the SRM. It works as an “are you alive” type of
call.

Details:

 In: TUserID authorizationID,

 Out: string versionInfo
 TExtraInfo otherInfo

Notes:

• srmPing() returns a string containing SRM v2.2 version number as a minimal “up
and running” information. For this particular SRM v2.2 version, it must be
“v2.2”. Other versions may have “v1.1”, “v3.0”, and so on.

• Any additional information about the SRM can be provided in the output
parameter otherInfo.

